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Abstract. The direct employment of the T-function defined as a limiting transformation 
of the Riemann theta function leading to a system of algebraic dispersion equations, yields 
solutions of some nonlinear partial differential equations in the form of solitons on a 
background of quasi-periodic waves. Pure solitons and pure quasi-periodic solutions 
appear as particular cases. The method is illustrated by the example of the KdV equation 
and is also compared with the Hirota bilinear operator technique. 

1. Introduction and definitions 

In this paper we present a unified approach to the soliton and quasi-periodic solutions 
of some nonlinear partial differential equations ( NLPDE) which, we assume, have 
quasi-periodic solutions which can be expressed by the Riemann abstract theta function 
(e-f). In this method solutions in the form of solitons on a background of quasi-periodic 
waves can automatically appear. 

The problem is solved by an application of what we call the T-function (T-f). This 
in some sense generalises the 0-f and has already been applied in a similar form to 
the sine-Gordon equation (Zagrodzinski and Jaworski 1982). 

One can expect that the quasi-periodic solution would tend to the soliton solution 
when all the diagonal elements of the B-matrix (which is a parameter) increase. This 
idea was expressed by Matveev (1979) who discussed the spectra of the associated 
scattering problems, but to our knowledge it has never been exploited. Such a limit, 
if it exists, we shall call the ‘complete soliton limit’. Then also the ‘partial soliton 
limits’ would exist when only some diagonal elements of the B-matrix tend to infinity. 

Quite analogously, the T-f as a complete and/or partial limit of the Riemann e-f 
is defined. Our approach is based on a different principle from that of the generalisation 
presented in the series of papers by Jimbo et a1 (1981), although the resemblances 
between their 7-function and our T-f are quite marked. 

Another difference is that we employ a system of dispersion equations for the 
NLPDE being considered which allows us to determine all the parameters of the solutions 
effectively (Dubrovin 198 1, Zagrodzinski 1982). Although the method presented here 
can be applied to all Kdv-type, KP, SC, Toda and related equations, we confine ourselves 
here to the simple Kdv equation (for some other equations see appendix 2). 

For the fixed decomposition of the g-dimensional complex space C g  = C’ x C p  we 
define the T-f, as in Zagrodziikki and Jaworski (1982) by the limiting procedure 

( z ’ )  := iim . e ( ~ ’ - i D ” e ’ / 2 / ~ )  
z p  Dss+oc ZP 
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or 

T(z):= c exp[in-(2(a, z”)+(a ,  l?sa))]8(zp+ Bpsa IBPP) ,  
a G D s  

where z E Cg, zsSp E CsSp,  respectively; 8(z) is the abstract Riemann theta function of 
the argument z =  zs +zp, (Igusa 1972, Dubrovin 1981); B E  Cgxg is the Riemannian 
matrix to be thought of here as a parameter and is composed of blocks B””, BSP, Bps,  
BPP. The quantities D”’ are defined as D” = Diag(1m B’”)), then BSs = B”” - iDs’, 
Ds c Z s ,  Dg c ZR represent the unit hypercubes in the relevant lattices and es is the 
unit vector in Ds (see appendix 1 for details). 

For the T-f the following addition theorem holds 

T ( z - w ) T ( z + w ) = 2  c na(W)T2(z+a/2) ,  
as  D8 

where 

C l a ( w )  = 2-(g+1) (-1)‘”.*’[R(O(6(2B)]-’R(2w)612B) exp(i2n-(6, w)), 
* €  DR 

(3) 

(4) 

and the sum (.) is over all  ED": ( 6 ’ - p s ) ~ D s ;  6 = S ’ + S p .  
Equation (3) is an addition formula for T-fs which (for 7-functions) Jimbo et a1 

(1981) were looking for. In the particular case when C” = 0, (3) reduces to the addition 
theorem for 8-fs (Dubrovin 1981). In general, relation (3 )  gives convenient rules for 
the differentiation of T-fs and in our opinion its existence decides the utility of the 
famous Hirota bilinear operator methods (see appendix 2). 

Denoting L E  In T(z) ,  the partial derivatives (a,,( .) = ( are now 

= T 2 ( z )  1 [a,, . . . a, ,Ra(0)]T2(z+a/2),  etc. (7) 
a E D g  

2. Example of the application of the method 

In the sequel we restrict ourselves to the K d v  equation. Starting from the ansatz 

U = W + L,,,, W E  R -constant, ( 8 )  

the K d v  equation U,, = ( u , , ~  + 6 u 2 ) , ,  reads as L,”, = L ,”?”,, +6(L,,,)’+C, with y = 
x + 12 Wt and with a new constant C E R .  

If z = xy + wt + zo; x, o, zo E Cg, the last differential equation, if it holds for any zo, 
by (6) and (7) leads to the system of algebraic equations which is in fact a system of 
dispersion equations for the K d v  equation 
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for any S E Dg. The coefficients L,..,,[ are given by 

-(P, B ~ ~ p ~ ) ] e ( 2 z , , + B , , ’ ( S ~ - 2 p s ) + B D ” S , , ~ 2 B ~ ~ ) )  1 2-0 , (10) 

and the sum is over p.i as in ( 5 ) .  Derivation is elementary and (9) has the same form 
as for periodic processes because of (3 ) ,  but only the coefficients are different. 

If (9) has a non-trivial solution, with respect to x, o E Dg, the KdV equation has a 
solution (8), (with constant background W as this was discussed in the pure soliton 
case by Au and Fung (1982)). 

For simplicity we assume W=O. The dispersion equations (9) represent a set of 
2g equations with respect to 2 g  + 1 quantities (x, w, C)  and in the particular case of 
the pure quasi-periodic solutions (C” = 0) have been exhaustively discussed by 
Dubrovin (1981 ) for g S 2 .  

On the other hand, if C p  = 0, the class of solutions of (9) contains the multi- 
soliton solutions (regular and real) which indicates that one can look for solutions for 
arbitrary g. 

In the case of C p  = O  putting e.g. 6 =0 ,  S = (0 , .  . , , O ,  I ,  0,. . . , O ) ,  and 6 = 
(0, ., 0, 1,0, .O, l , O , .  0) with the units on the pth and qth place one finds C =0,  
wp = (i2.rr)’x; and exp(i.rrB,,,) = (x,, +x,)’/(x,, - x,)-~, respectively; i.e. the soliton rela- 
tions in Hirota’s (1980) version. 

For present purposes the most important cases are the intermediate situations. We 
confine ourselves to Cs = C p  = C1  i.e. to the soliton on the background of a periodic 
wave (plus constant background provided W f 0). In this simplest case, solutions 
have also been found by the technique of Backlund transformation (Wahlquist 1976) 
and by the inverse scattering method (Kuznetsov and Mikhailov 1974) but the T-f 
formalism presented here seems to be more effective in general. The T-f now contains 
only two terms and the solution is 

U =  ~ + { l n [ e ( z , / B ~ ~ ) + e ( z 2 + B , , l B 2 ~ )  expi.n(2zI +Re  Bll)II,xx ( 1 1 )  

with x , , ~  and w1,2  determined by the dispersion equations (9). 
If z I ,  z2,  B,, E iR, i, j = I ,  2 we have real solutions and it can be seen that the two 

terms in ( 1  1 )  describe the periodic wavetrain before and after interaction with the 
soliton; as a result the wavetrain is shifted in phase only (by the off-diagonal element 
of the B-matrix). 

According to (21, the T-f formalism provides a generalisation of the Riemann e-f 
so the knowledge when a (pure) quasi-periodic solution has as a limit the multisolution 
solution determined by the T-f formalism is important. If the limit of the quasi-periodic 
solution is defined in the sense of equation ( 1 )  and exists, one requires that zs  E iR (in 
the opposite case either singular or complex solutions appear). But for g > 2 the 
problem becomes of the same type as in the case of pure quasi-periodic solutions 
where conditions on the B-matrix can appear (Dubrovin 1981). 

As a final remark, let us note that the simplicity of the T-f technique is closely 
related to the dispersion equation method since in the language of contour integrals 
(Matveev 1979, Ablowitz and Segur 1981), when the finite gap spectrum tends to a 
discrete one, some integrals become divergent creating trouble in the description of 
the limiting case. 
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Appendix 1. T-functions 

For the Riemannian matrix B E  Cgxg, which is symmetric and with positively defined 
imaginary part, the &function is defined as 

(Al . l )  

(e.g. Igusa 1972, Dubrovin 1981, Zagrodzinski 1982, 1983). Hence according to (1 )  

.( :: - i Dsses/2 ) = C c exp{i.rr[2(ns, (zs-iDsse’/2)) 
n s E Z s  n P E Z P  

+2(nP, z ” ) + ( ( n S  + n P ) ,  B ( n S  +nP))]} 

= C exp{i.rr[2(ns, zs)+(ns,  B s s n S ) ] }  exp[-n(n’, DSs(n”-es))]  
n s . s Z s  

X exp{i.rr[2(nP, (zp+Bpsns))+(np,  BPPnP )I). (A1.2) 
n P E Z P  

The last sum over Z p  is equal to 6(zp +Bp’ns  1 B p p ) .  The second term in (A1.2) in the 
limit, becomes 

i fnsE D’ {A: if nsf !  D” 
lim exp [- .rr(ns,  Dss(ns -e”))]  = 

D’S-PW 
(A1.3) 

and therefore the sum over Zs reduces to the sum over D’, i.e. ( n s ) i  = 0 or 1. Thus 
we obtain 

T( z) = exp(i.rr[2( ns, zs) + ( ns, B ” n ’ ) ] )  e( zp + Bpsnsl B P P ) .  (A1.4) 
n S E D ’  

Equations (3)-(5) follow from the addition theorem for the &functions 

e (z  + w I B ) ~ ( z -  w I B )  = 2 C a i , (w)e2(z  + a / 2 ) ~ )  (A1.5) 
i,€Dg 

with 

ai,( w)  = 2-(g+’) 

provided that the limiting procedure as defined in (1 )  is performed. 

opposite situation when C p  = 0, by (2)  and (5) we have 

( -~ )“~”c ) (Bs  / 2 ~ ) - ’ e ( 2 ~  + BS 1 2 ~ )  exp(i2.rr(~, w ) ) ,  (A1.6) 
aeD’  

For the particular case of C s  = 0, (3) is equivalent once again to (A1.5). In the 

T(z)  = exp[irr(2(a, z”) +(a, B”a))], (A1.7) 

R(2wI6”/2B) = c exp{-i2.rr(ps, [2w” + 8 ” ( S ’  - p s ) ] ) } ,  (Al.8) 

L T € D S  

g s : ( 8 s - g s ) € D s  

respectively, under the condition Im Diag ass = 0. 
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In this way &functions represent a particular case of T-functions, but on the other 
hand T-functions can be treated as a limiting case of &functions but of a higher order. 
Note that (A1.7) coincides with the $function of Hirota (1980, p 164). 

Appendix 2. The Hirota bilinear operator and addition theorem for T-functions 

The famous Hirota bilinear operator D is defined by 

D , ,  . . . a, f 0 g := -a, :,) . . * (az,Iq - az:q)f~z)g(z’)lz=z~’ (A2.1) 

where z, is the ith component of z E Cg, 1 S i l ,  . . . , i, s q and the indices can be repeated 
(e.g. Hirota 1980, Ablowitz and Segur 1981, Rogers and Shadwick 1982). 

From (A2.1) it is seen that 

Q , I  . * D z , , f O  g = a w , !  . . . a ,  f(z + w)g(z- w)l,=,. (A2.2) 

Moreover, i f f =  g = T, where T is given by (1 )  or (2) and the D . .  . D operator is of 
even order, i.e. q = 2s, by the addition formula (3) we get also the representation 

(A2.3) Dz,, . . . Dzt2$T0 T =  C 9 . * aw,l,na(o)IT2(z+a/2), 
o e D  

which shortly we will write as 

(A2.4) 

Now observe that most of the soliton type differential equations in the Hirota 
formalism leads to the form (Hirota 1980) 

(A2.5) 
p + q + r = 2 s  

where a,,, are constant and z = x x  + vy + ut + zo E Cg and A represents a finite set. 
For example, the Kdv equation reduces to Ox( D, + D i ) F  0 F = 0, the Kadomtzev- 

Petviashvili equation to (D’, + + DxD,)F 0 F = 0, the Kotera-Sawada equation to 
Ox( D, + 05;) F 0 F = 0, the sine-Gordon equation to ( C + 0: - 0:) FI 0 FI = FS ; F2 = FT, 
C E R, etc. Observe that all these above differential operators are of the even order. 

By identifying Fp with Tp = T(z +/?/2) and hence treating A as a subset of Dg, 
we find that if z E C g ,  and after a change of the independent variables x, y,  t + zI, . . . , zg, 
equation (A2.5) becomes 

1 1 Gs(D2”)T;o Tp = O .  
p a A  s 

(A2.6) 

Here Gs(D2’) denotes a multilinear form of all possible D2” operators of order 2s 
with coefficients which are polynomials in x ’ s ,  v’s and U ’ S .  

According to (A2.3), (A2.6) can be simplified to 

c c c Gs(d2sfiR,)T2[z+(a +P)/21=0, 
P E A L I E D ’  s 

and next to 

C Gs(d2sOn,-p)T2(z + ~ / 2 )  =0,  
a c D 8 B E A  s 

(A2.7) 
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which will be satisfied if the system of 2' algebraic equations 

c Gs(d2sl lE-o)  = 0 for each e E D', 
$ E A  s 

(A2.8) 

holds (the Tf functions form a set of linearly independent functions of z). 
The expressions in (A2.8) are the polynomials in x i ,  vi, and uir 1 < is g, and this 

means of course that (A2.8) is the system of dispersion equations considered above if 
the ansatz containing XPEA cp In To and/or its derivatives is substituted into the original 
partial differential equation. 

Indeed, 

L, . . . a w , J - ( z + w ) T ( z -  w ) I w = o =  T'MI ,...) 2JL), (A2.9) 

where L = In T. The second and fourth order M operators were given by (6) and (7), 
respectively. The 6th and 8th order ones are the following 

(A2.10) ,..,, 6(L)  = L l  ,..., 6+2(L1 ,2L3  ,..., 6 + .  . . ,)+4(L1,2L3,4L5,6+. . . 7 1 9  

15x 15x 

,..., 8(")= Ll  ,..., 8+2(LI,ZL ..... 8+i;; ,)+2(LI ,..., 4L5 ,.., 8 + .  35x . . 

(A2.11) 

Below each term the number of combinations is given. These operators are useful 
when the solutions of higher order K d v  equations are considered (Caudrey 1978). 

A few remarks must be made. It is clear that (A2.8), although derived here in the 
spirit of the Hirota technique, coincides with the dispersion equations (e.g. (9) for 
K d v )  and by (A2.4) is an implicit consequence of the addition theorem (3), whose 
importance with respect to &functions was raised also by Jimbo et al (1981) and Date 
et al (1982). 

If (A2.8) has a solution, the NLPD equation will be satisfied by the relevant ansatz 
of the T-functions describing processes more general than pure solitons (including 
also the singular and rational ones). 
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